Syndetics cover image
Image from Syndetics

Biomechanics : Optimization, Uncertainties and Reliability.

By: Contributor(s): Material type: TextTextPublisher: London : John Wiley & Sons, Incorporated, 2017Copyright date: ©2017Description: 1 online resource (258 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781119379119
Genre/Form: Additional physical formats: Print version:: Biomechanics : Optimization, Uncertainties and ReliabilityDDC classification:
  • 571.43
Online resources:
Contents:
Cover -- Title Page -- Copyright -- Contents -- Preface -- Introduction -- List of Abbreviations -- 1. Introduction to Structural Optimization -- 1.1. Introduction -- 1.2. History of structural optimization -- 1.3. Sizing optimization -- 1.3.1. Definition -- 1.3.2. First works in sizing optimization -- 1.3.3. Numerical application -- 1.4. Shape optimization -- 1.4.1. Definition -- 1.4.2. First works in shape optimization -- 1.4.3. Numerical application -- 1.5. Topology optimization -- 1.5.1. Definition -- 1.5.2. First works in topology optimization -- 1.5.3. Numerical application -- 1.6. Conclusion -- 2. Integration of Structural Optimization into Biomechanics -- 2.1. Introduction -- 2.2. Integration of structural optimization into orthopedic prosthesis design -- 2.2.1. Structural optimization of the hip prosthesis -- 2.2.2. Sizing optimization of a 3D intervertebral disk prosthesis -- 2.3. Integration of structural optimization into orthodontic prosthesis design -- 2.3.1. Sizing optimization of a dental implant -- 2.3.2. Shape optimization of a mini-plate -- 2.4. Advanced integration of structural optimization into drilling surgery -- 2.4.1. Case of treatment of a crack with a single hole -- 2.4.2. Case of treatment of a crack with two holes -- 2.5. Conclusion -- 3. Integration of Reliability Into Structural Optimization -- 3.1. Introduction -- 3.2. Literature review of reliability-based optimization -- 3.3. Comparison between deterministic and reliability-based optimization -- 3.3.1. Deterministic optimization -- 3.3.2. Reliability-based optimization -- 3.4. Numerical application -- 3.4.1. Description and modeling of the studied problem -- 3.4.2. Numerical results -- 3.5. Approaches and strategies for reliability-based optimization -- 3.5.1. Mono-level approaches -- 3.5.2. Double-level approaches -- 3.5.3. Sequential decoupled approaches.
3.6. Two points of view for developments of reliability-based optimization -- 3.6.1. Point of view of "Reliability" -- 3.6.2. Point of view of "Optimization" -- 3.6.3. Method efficiency -- 3.7. Philosophy of integration of the concept of reliability into structural optimization groups -- 3.8. Conclusion -- 4. Reliability-based Design Optimization Model -- 4.1. Introduction -- 4.2. Classic method -- 4.2.1. Formulations -- 4.2.2. Optimality conditions -- 4.2.3. Algorithm -- 4.2.4. Advantages and disadvantages -- 4.3. Hybrid method -- 4.3.1. Formulation -- 4.3.2. Optimality conditions -- 4.3.3. Algorithm -- 4.3.4. Advantages and disadvantages -- 4.4. Improved hybrid method -- 4.4.1. Formulations -- 4.4.2. Optimality conditions -- 4.4.3. Algorithm -- 4.4.4. Advantages and disadvantages -- 4.5. Optimum safety factor method -- 4.5.1. Safety factor concept -- 4.5.2. Developments and optimality conditions -- 4.5.3. Algorithm -- 4.5.4. Advantages and disadvantages -- 4.6. Safest point method -- 4.6.1. Formulations -- 4.6.2. Algorithm -- 4.6.3. Advantages and disadvantages -- 4.7. Numerical applications -- 4.7.1. RBDO of a hook: CM and HM -- 4.7.2. RBDO of a triangular plate: HM & IHM -- 4.7.3. RBDO of a console beam (sandwich beam): HM and OSF -- 4.7.4. RBDO of an aircraft wing: HM & SP -- 4.8. Classification of the methods developed -- 4.8.1. Numerical methods -- 4.8.2. Semi-numerical methods -- 4.8.3. Comparison between the numerical and semi-numerical methods -- 4.9. Conclusion -- 5. Reliability-based Topology Optimization Model -- 5.1. Introduction -- 5.2. Formulation and algorithm for the RBTO model -- 5.2.1. Formulation -- 5.2.2. Algorithm -- 5.2.3. Validation of the RBTO code developed -- 5.3. Validation of the RBTO model -- 5.3.1. Analytical validation -- 5.3.2. Numerical validation -- 5.4. Variability of the reliability index.
5.4.1. Example 1: MBB beam -- 5.4.2. Example 2: Cantilever beam -- 5.4.3. Example 3: Cantilever beam with double loads -- 5.4.4. Example 4: Cantilever beam with a transversal hole -- 5.5. Numerical applications for the RBTO model -- 5.5.1. Static analysis -- 5.5.2. Modal analysis -- 5.5.3. Fatigue analysis -- 5.6. Two points of view for integration of reliability into topology optimization -- 5.6.1. Point of view of "topology" -- 5.6.2. Point of view of "reliability" -- 5.6.3. Numerical applications for the two points of view -- 5.7. Conclusion -- 6. Integration of Reliability and Structural Optimization into Prosthesis Design -- 6.1. Introduction -- 6.2. Prosthesis design -- 6.3. Integration of topology optimization into prosthesis design -- 6.3.1. Importance of topology optimization in prosthesis design -- 6.3.2. Place of topology optimization in the prosthesis design chain -- 6.4. Integration of reliability and structural optimization into hip prosthesis design -- 6.4.1. Numerical application of the deterministic approach -- 6.4.2. Numerical application of the reliability-based approach -- 6.5. Integration of reliability and structural optimization into the design of mini-plate systems used to treat fractured mandibles -- 6.5.1. Numerical application of the deterministic approach -- 6.5.2. Numerical application of the reliability-based approach -- 6.6. Integration of reliability and structural optimization into dental implant design -- 6.6.1. Description and modeling of the problem -- 6.6.2. Numerical results -- 6.7. Conclusion -- APPENDICES -- Appendix 1. ANSYS Code for Stem Geometry -- Appendix 2. ANSYS Code for Mini-Plate Geometry -- Appendix 3. ANSYS Code for Dental Implant Geometry -- Appendix 4. ANSYS Code for Geometry of Dental Implant with Bone -- Bibliography -- Index -- Other titles from iSTE in Mechanical Engineering and Solid Mechanics.
EULA.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Call number Status Date due Barcode Item holds
Ebrary Online Books Ebrary Online Books Colombo Available CBERA00018
Ebrary Online Books Ebrary Online Books Jaffna Available JFEBRA00018
Ebrary Online Books Ebrary Online Books Kandy Available KDEBRA00018
Total holds: 0

Enhanced descriptions from Syndetics:

In this book, the authors present in detail several recent methodologies and algorithms that they developed during the last fifteen years. The deterministic methods account for uncertainties through empirical safety factors, which implies that the actual uncertainties in materials, geometry and loading are not truly considered. This problem becomes much more complicated when considering biomechanical applications where a number of uncertainties are encountered in the design of prosthesis systems. This book implements improved numerical strategies and algorithms that can be applied to biomechanical studies.

Cover -- Title Page -- Copyright -- Contents -- Preface -- Introduction -- List of Abbreviations -- 1. Introduction to Structural Optimization -- 1.1. Introduction -- 1.2. History of structural optimization -- 1.3. Sizing optimization -- 1.3.1. Definition -- 1.3.2. First works in sizing optimization -- 1.3.3. Numerical application -- 1.4. Shape optimization -- 1.4.1. Definition -- 1.4.2. First works in shape optimization -- 1.4.3. Numerical application -- 1.5. Topology optimization -- 1.5.1. Definition -- 1.5.2. First works in topology optimization -- 1.5.3. Numerical application -- 1.6. Conclusion -- 2. Integration of Structural Optimization into Biomechanics -- 2.1. Introduction -- 2.2. Integration of structural optimization into orthopedic prosthesis design -- 2.2.1. Structural optimization of the hip prosthesis -- 2.2.2. Sizing optimization of a 3D intervertebral disk prosthesis -- 2.3. Integration of structural optimization into orthodontic prosthesis design -- 2.3.1. Sizing optimization of a dental implant -- 2.3.2. Shape optimization of a mini-plate -- 2.4. Advanced integration of structural optimization into drilling surgery -- 2.4.1. Case of treatment of a crack with a single hole -- 2.4.2. Case of treatment of a crack with two holes -- 2.5. Conclusion -- 3. Integration of Reliability Into Structural Optimization -- 3.1. Introduction -- 3.2. Literature review of reliability-based optimization -- 3.3. Comparison between deterministic and reliability-based optimization -- 3.3.1. Deterministic optimization -- 3.3.2. Reliability-based optimization -- 3.4. Numerical application -- 3.4.1. Description and modeling of the studied problem -- 3.4.2. Numerical results -- 3.5. Approaches and strategies for reliability-based optimization -- 3.5.1. Mono-level approaches -- 3.5.2. Double-level approaches -- 3.5.3. Sequential decoupled approaches.

3.6. Two points of view for developments of reliability-based optimization -- 3.6.1. Point of view of "Reliability" -- 3.6.2. Point of view of "Optimization" -- 3.6.3. Method efficiency -- 3.7. Philosophy of integration of the concept of reliability into structural optimization groups -- 3.8. Conclusion -- 4. Reliability-based Design Optimization Model -- 4.1. Introduction -- 4.2. Classic method -- 4.2.1. Formulations -- 4.2.2. Optimality conditions -- 4.2.3. Algorithm -- 4.2.4. Advantages and disadvantages -- 4.3. Hybrid method -- 4.3.1. Formulation -- 4.3.2. Optimality conditions -- 4.3.3. Algorithm -- 4.3.4. Advantages and disadvantages -- 4.4. Improved hybrid method -- 4.4.1. Formulations -- 4.4.2. Optimality conditions -- 4.4.3. Algorithm -- 4.4.4. Advantages and disadvantages -- 4.5. Optimum safety factor method -- 4.5.1. Safety factor concept -- 4.5.2. Developments and optimality conditions -- 4.5.3. Algorithm -- 4.5.4. Advantages and disadvantages -- 4.6. Safest point method -- 4.6.1. Formulations -- 4.6.2. Algorithm -- 4.6.3. Advantages and disadvantages -- 4.7. Numerical applications -- 4.7.1. RBDO of a hook: CM and HM -- 4.7.2. RBDO of a triangular plate: HM & IHM -- 4.7.3. RBDO of a console beam (sandwich beam): HM and OSF -- 4.7.4. RBDO of an aircraft wing: HM & SP -- 4.8. Classification of the methods developed -- 4.8.1. Numerical methods -- 4.8.2. Semi-numerical methods -- 4.8.3. Comparison between the numerical and semi-numerical methods -- 4.9. Conclusion -- 5. Reliability-based Topology Optimization Model -- 5.1. Introduction -- 5.2. Formulation and algorithm for the RBTO model -- 5.2.1. Formulation -- 5.2.2. Algorithm -- 5.2.3. Validation of the RBTO code developed -- 5.3. Validation of the RBTO model -- 5.3.1. Analytical validation -- 5.3.2. Numerical validation -- 5.4. Variability of the reliability index.

5.4.1. Example 1: MBB beam -- 5.4.2. Example 2: Cantilever beam -- 5.4.3. Example 3: Cantilever beam with double loads -- 5.4.4. Example 4: Cantilever beam with a transversal hole -- 5.5. Numerical applications for the RBTO model -- 5.5.1. Static analysis -- 5.5.2. Modal analysis -- 5.5.3. Fatigue analysis -- 5.6. Two points of view for integration of reliability into topology optimization -- 5.6.1. Point of view of "topology" -- 5.6.2. Point of view of "reliability" -- 5.6.3. Numerical applications for the two points of view -- 5.7. Conclusion -- 6. Integration of Reliability and Structural Optimization into Prosthesis Design -- 6.1. Introduction -- 6.2. Prosthesis design -- 6.3. Integration of topology optimization into prosthesis design -- 6.3.1. Importance of topology optimization in prosthesis design -- 6.3.2. Place of topology optimization in the prosthesis design chain -- 6.4. Integration of reliability and structural optimization into hip prosthesis design -- 6.4.1. Numerical application of the deterministic approach -- 6.4.2. Numerical application of the reliability-based approach -- 6.5. Integration of reliability and structural optimization into the design of mini-plate systems used to treat fractured mandibles -- 6.5.1. Numerical application of the deterministic approach -- 6.5.2. Numerical application of the reliability-based approach -- 6.6. Integration of reliability and structural optimization into dental implant design -- 6.6.1. Description and modeling of the problem -- 6.6.2. Numerical results -- 6.7. Conclusion -- APPENDICES -- Appendix 1. ANSYS Code for Stem Geometry -- Appendix 2. ANSYS Code for Mini-Plate Geometry -- Appendix 3. ANSYS Code for Dental Implant Geometry -- Appendix 4. ANSYS Code for Geometry of Dental Implant with Bone -- Bibliography -- Index -- Other titles from iSTE in Mechanical Engineering and Solid Mechanics.

EULA.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2018. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.