Syndetics cover image
Image from Syndetics

Sharing data and models in software engineering / Tim Menzies [and four others] ; designer, Mark Rogers.

Contributor(s): Material type: TextTextPublisher: Waltham, Massachusetts : Morgan Kaufmann, 2015Copyright date: ©2015Description: 1 online resource (415 pages) : illustrations (some color), graphsContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9780124173071 (e-book)
Subject(s): Genre/Form: Additional physical formats: Print version:: Sharing data and models in software engineering.DDC classification:
  • 005.1 23
LOC classification:
  • QA76.758 .S537 2015
Online resources:
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Call number Status Date due Barcode Item holds
Ebrary Online Books Ebrary Online Books Colombo Available CBERA1000578
Ebrary Online Books Ebrary Online Books Jaffna Available JFEBRA1000578
Ebrary Online Books Ebrary Online Books Kandy Available KDEBRA1000578
Total holds: 0

Enhanced descriptions from Syndetics:

Data Science for Software Engineering: Sharing Data and Models presents guidance and procedures for reusing data and models between projects to produce results that are useful and relevant. Starting with a background section of practical lessons and warnings for beginner data scientists for software engineering, this edited volume proceeds to identify critical questions of contemporary software engineering related to data and models. Learn how to adapt data from other organizations to local problems, mine privatized data, prune spurious information, simplify complex results, how to update models for new platforms, and more. Chapters share largely applicable experimental results discussed with the blend of practitioner focused domain expertise, with commentary that highlights the methods that are most useful, and applicable to the widest range of projects. Each chapter is written by a prominent expert and offers a state-of-the-art solution to an identified problem facing data scientists in software engineering. Throughout, the editors share best practices collected from their experience training software engineering students and practitioners to master data science, and highlight the methods that are most useful, and applicable to the widest range of projects.- Shares the specific experience of leading researchers and techniques developed to handle data problems in the realm of software engineering- Explains how to start a project of data science for software engineering as well as how to identify and avoid likely pitfalls- Provides a wide range of useful qualitative and quantitative principles ranging from very simple to cutting edge research- Addresses current challenges with software engineering data such as lack of local data, access issues due to data privacy, increasing data quality via cleaning of spurious chunks in data

Includes bibliographical references and indexes.

Electronic reproduction. Ann Arbor, MI : ProQuest, 2015. Available via World Wide Web. Access may be limited to ProQuest affiliated libraries.

There are no comments on this title.

to post a comment.