000 10849nam a2200961 a 4500
001 EBC954640
003 MiAaPQ
005 20190211053542.0
006 m o d |
007 cr cn |||m|||a
008 120917s2012 nyua foab 001 0 eng d
020 _a9781606503348 (electronic bk.)
020 _a1606503340 (electronic bk.)
020 _z9781606503324 (print)
020 _z1606503324 (print)
024 7 _a10.5643/9781606503348
_2doi
035 _a(OCoLC)810794922
035 _a(CaBNvSL)swl00401294
035 _a(MiAaPQ)EBC954640
035 _a(Au-PeEL)EBL954640
035 _a(CaPaEBR)ebr10605114
035 _a(CaONFJC)MIL420846
035 _a(OCoLC)830170658
040 _aMiAaPQ
_cMiAaPQ
_dMiAaPQ
050 4 _aQC20.7.F56
_bD684 2012
082 0 4 _a530.155353
_223
100 1 _aDow, John O.,
_d1941-
245 1 4 _aThe essentials of finite element modeling and adaptive refinement
_h[electronic resource] :
_bfor beginning analysts to advanced researchers in solid mechanics /
_cJohn O. Dow.
260 _a[New York, N.Y.] (222 East 46th Street, New York, NY 10017) :
_bMomentum Press,
_c2012.
300 _a1 electronic text (xvii, 271 p.) :
_bill., digital file.
504 _aIncludes bibliographical references and index.
505 0 _aPreface -- 1. Introduction -- 1.1 Problem definition -- 1.2 Overall objectives -- 1.3 Specific tasks -- 1.4 The central role of the interpolation functions -- 1.5 A closer look at the interpolation functions -- 1.6 Physically interpretable interpolation functions in action -- 1.7 The overall significance of the physically interpretable notation -- 1.8 Examples of model refinement and the need for adaptive refinement -- 1.9 Examples of adaptive refinement and error analysis -- 1.10 Summary -- 1.11 References --
505 8 _a2. An overview of finite element modeling characteristics -- 2.1 Introduction -- 2.2 Characteristics of exact finite element results -- 2.3 More demanding loading conditions -- 2.4 Discretization errors in an initial model -- 2.5 Error reduction and uniform refinement -- 2.6 Error reduction and adaptive refinement -- 2.7 The effect of element modeling capability on discretization errors -- 2.8 Summary and future applications -- 2.9 References --
505 8 _a2A. Elements of two-dimensional modeling -- 2A1. Introduction -- 2A2. Submodeling refinement strategy -- 2A3. Initial model -- 2A4. Adaptive refinement results -- 2A5. Summary -- 2A6. References --
505 8 _a2B. Exact solutions for two longitudinal bar problems -- 2B1. Introduction -- 2B2. General solution of the governing differential equation -- 2B3. Application of a free boundary condition -- 2B4. Second application of separation of variables -- 2B5. Solution for a constant distributed load -- 2B6. Solution for a linearly varying distributed load -- 2B7. Summary --
505 8 _a3. Identification of finite element strain modeling capabilities -- 3.1 Introduction -- 3.2 Identification of the strain modeling capabilities of a three-node bar element -- 3.3 An introduction to physically interpretable interpolation polynomials -- 3.4 Identification of the physically interpretable coefficients -- 3.5 The decomposition of element displacements into strain components -- 3.6 A common basis for the finite element and finite difference methods -- 3.7 Modeling capabilities of the four-node bar element -- 3.8 Identification and evaluation of element behavior -- 3.9 Evaluation of a two-dimensional strain model -- 3.10 Analysis by inspection in two dimensions -- 3.11 Summary and conclusion -- 3.12 Reference --
505 8 _a4. The source and quantification of discretization errors -- 4.1 Introduction -- 4.2 Background concepts, the residual approach to error analysis -- 4.3 Quantifying the failure to satisfy point-wise equilibrium -- 4.4 Every finite element solution is an exact solution to some problem -- 4.5 Summary and conclusion -- 4.6 Reference --
505 8 _a5. Modeling inefficiency in irregular isoparametric elements -- 5.1 Introduction -- 5.2 An overview of isoparametric element strain modeling characteristics -- 5.3 Essential elements of the isoparametric method -- 5.4 The source of strain modeling errors in isoparametric elements -- 5.5 Strain modeling characteristics of isoparametric elements -- 5.6 Modeling errors in irregular isoparametric elements -- 5.7 Results for a series of uniform refinements -- 5.8 Summary and conclusion -- 5.9 References --
505 8 _a6. Introduction to adaptive refinement -- 6.1 Introduction -- 6.2 Physically interpretable error estimators -- 6.3 A model refinement strategy -- 6.4 A demonstration of uniform refinement -- 6.5 A demonstration of adaptive refinement -- 6.6 An application of an absolute error estimator -- 6.7 Summary -- 6.8 References --
505 8 _a7. Strain energy-based error estimators, the Z/Z error estimator -- 7.1 Introduction -- 7.2 The basis of the Z/Z error estimator, a smoothed strain representation -- 7.3 The Z/Z elemental strain energy error estimator -- 7.4 The Z/Z error estimator -- 7.5 A modified locally normalized Z/Z error estimator -- 7.6 A demonstration of the Z/Z error estimator -- 7.7 A demonstration of adaptive refinement -- 7.8 Summary and conclusion -- 7.9 References --
505 8 _a7A. Gauss points, super convergent strains, and Chebyshev polynomials -- 7A1. Introduction -- 7A2. Modeling behavior of three-node elements -- 7A3. Gauss points and Chebyshev polynomials -- 7A4. References --
505 8 _a7B. An unsuccessful example of adaptive refinement -- 7B1. Introduction -- 7B2. Example 1 -- 7B3. Example 2 -- 7B4. Summary --
505 8 _a8. A high resolution point-wise residual error estimator -- 8.1 Introduction -- 8.2 An overview of the point-wise residual error estimator -- 8.3 The theoretical basis for the point-wise residual error estimator -- 8.4 Computation of the point-wise residual error estimator -- 8.5 Formulation of the finite difference operators -- 8.6 The formulation of the point-wise residual error estimator -- 8.7 A demonstration of the point-wise finite difference error estimator -- 8.8 A demonstration of adaptive refinement -- 8.9 A temptation to avoid and a reason for using child meshes -- 8.10 Summary and conclusion -- 8.11 Reference --
505 8 _a9. Modeling characteristics and efficiencies of higher order elements -- 9.1 Introduction -- 9.2 Adaptive refinement examples (4.0% termination criterion) -- 9.3 Adaptive refinement examples (0.4% termination criterion) -- 9.4 In-situ identification of the five-node element modeling behavior -- 9.5 Strain contributions of the basis set components -- 9.6 Comparative modeling behavior of four-node elements -- 9.7 Summary, conclusion, and recommendations for future work --
505 8 _a10. Formulation of a 10-node quadratic strain element -- 10.1 Introduction -- 10.2 Identification of the linearly independent strain gradient quantities -- 10.3 Identification of the elemental strain modeling characteristics -- 10.4 Formulation of the strain energy expression -- 10.5 Identification and evaluation of the required integrals -- 10.6 Expansion of the strain energy kernel -- 10.7 Formulation of the stiffness matrix -- 10.8 Summary and conclusion --
505 8 _a10A. A numerical example for a 10-node stiffness matrix -- 10A1. Introduction -- 10A2. Element geometry and nodal numbering -- 10A3. Formulation of the transformation to nodal displacement coordinates -- 10A4. Formulation and evaluation of the strain energy expression -- 10A5. Formulation of the stiffness matrix -- 10A6. Summary and conclusion --
505 8 _a10B. Matlab formulation of the 10-node element stiffness matrix -- 10B1. Introduction -- 10B2. Driver program for forming the stiffness matrix for a 10-node element -- 10B3. Form phi and phi inverse for 10-node element -- 10B4. Form integrals in stiffness matrix using Green's theorem -- 10B5. Form strain energy kernel for 10-node element -- 10B6. Plot geometry and nodes for 10-node element -- 10B7. Function to transform Matlab matrices to form for use in Word --
505 8 _a11. Performance-based refinement guides -- 11.1 Introduction -- 11.2 Theoretical overview for finite difference smoothing -- 11.3 Development of the refinement guide -- 11.4 Problem description -- 11.5 Examples of adaptive refinement -- 11.6 An efficient refinement guide based on nodal averaging -- 11.7 Further comparisons of the refinement guides -- 11.8 Summary and conclusion -- 11.9 References --
505 8 _a12. Summary and research recommendations -- 12.1 Introduction -- 12.2 An overview of advances in adaptive refinement -- 12.3 Displacement interpolation functions revisited: a reinterpretation -- 12.4 Advances in the finite element method -- 12.5 Advances in the finite difference method -- 12.6 Recommendations for future work and research opportunities -- 12.7 Reference --
505 8 _aIndex.
506 _aRestricted to libraries which purchase an unrestricted PDF download via an IP.
520 3 _aAs the title declares, this book is largely concerned with finite element modeling and the improvement of these models with adaptive refinement. The intended audience for this book consists of readers who are either early in their technical careers or mature users and researchers in computational mechanics.
530 _aAlso available in print.
533 _aElectronic reproduction. Ann Arbor, MI : ProQuest, 2015. Available via World Wide Web. Access may be limited to ProQuest affiliated libraries.
538 _aMode of access: World Wide Web.
538 _aSystem requirements: Adobe Acrobat reader.
588 _aTitle from PDF t.p. (viewed on September 17, 2012).
650 0 _aFinite element method
_xMathematical models.
653 _aFinite element modeling
653 _aAdaptive refinement
653 _aRefinement guides
653 _aError estimators
653 _aModeling errors
653 _aResidual methods
653 _aRecovery methods
653 _aPhysically interpretable notation
653 _aTaylor series based interpolation polynomials
653 _aTen node element
653 _aModeling deficiencies
653 _aSub-modeling
653 _aTermination criteria
653 _aIn situ strains
653 _aElemental modeling errors
653 _aGlobal modeling errors
653 _aIsoparametric element flaws
653 _aPointwise errors
653 _aFinite difference templates
655 4 _aElectronic books.
776 0 8 _iPrint version:
_z1606503324
_z9781606503324
856 4 0 _uhttps://ebookcentral.proquest.com/lib/bcsl-ebooks/detail.action?docID=954640
_zClick to View
999 _c751669
_d751669