000 05425nam a2200589 i 4500
001 EBC4612387
003 MiAaPQ
006 m o d |
007 cr cnu||||||||
008 160806s2016 nyua foab 001 0 eng d
020 _a9781606505571
_qelectronic
020 _z9781606505564
_qprint
035 _a(MiAaPQ)EBC4612387
035 _a(Au-PeEL)EBL4612387
035 _a(CaPaEBR)ebr11239007
035 _a(CaONFJC)MIL942081
035 _a(OCoLC)956646477
040 _aFINmELB
_bspa
_erda
_cFINmELB
050 4 _aTK5103.592.Q83
_bM575 2016
082 0 _a621.382
_223
100 1 _aMishra, Vinod K.,
_eauthor.
245 1 3 _aAn introduction to quantum communication /
_cVinod K. Mishra.
264 1 _aNew York, [New York] (222 East 46th Street, New York, NY 10017) :
_bMomentum Press,
_c2016.
300 _a1 online resource (xi, 68 pages) :
_billustrations.
336 _atext
_2rdacontent
337 _acomputer
_2rdamedia
338 _aonline resource
_2rdacarrier
490 1 _aCommunications and signal processing collection
504 _aIncludes bibliographical references (page [63]) and index.
505 0 _a1. Why quantum communication? -- 1.1 Classical communication and its limits -- Concept of probability distribution -- Information or Shannon entropy -- Shannon-Hartley theorem -- Noisy-channel coding theorem -- Limits of classical communication -- 1.2 Role of quantum communication --
505 8 _a2. Physical basis of quantum communication -- 2.1 Basic quantum mechanics for QC -- Wave function -- Schr̲ödinger's equation -- Bra and Ket -- Probability function -- Superposition principle -- 2.2 Einstein-Podolsky-Rosen paradox -- 2.3 Some inequalities -- 2.4 Idea of entanglement -- 2.5 Quantum zeno effect -- 2.6 Decoherence -- 2.7 Propagation of light in an optical fiber --
505 8 _a3. Information theory for quantum communication -- 3.1 Mathematical representation of a single qubit -- 3.2 Entropies for information -- Von Neumann entropy -- Shannon entropy -- Renyi entropy -- Collision entropy -- Min-entropy -- Tsallis entropy -- Sharma-Mittal entropy -- 3.3 Shannon-like capacity theorems for QC -- 3.4 No-go theorems for qubits -- 3.5 A general model for quantum communication -- 3.6 Entanglement measures -- 3.7 Entanglement processing -- Appendix 3A. Special 3-qubit quantum states -- Appendix 3B. Peres-Horodecky criterion -- Appendix 3C. Von Neumann entropy -- Appendix 3D. Other information entropies --
505 8 _a4. Quantum error correction coding and cryptography -- 4.1 Need for coding in communication -- Source coding (classical) -- Channel coding (classical) -- 4.2 Source coding (quantum) -- 4.3 Error correction coding (quantum): an example -- 4.4 General error correction coding (quantum) -- 4.5 Cryptography: classical and quantum -- 4.6 A QKD protocols based on Heisenberg uncertainty principle -- 4.7 A QKD protocol based on entanglement -- 4.8 Practical QKD --
505 8 _a5. Quantum communication network (QCN) -- 5.1 A review of classical communication network -- 5.2 Basic QCN architecture -- 5.3 Quantum teleportation -- 5.4 Quantum super-dense coding -- 5.5 Quantum repeater network -- 5.6 Software defined quantum networking --
505 8 _a6. Physical realization of quantum communication network -- 6.1 Flying qubit sources -- 6.2 Stationary qubit sources -- 6.3 Qubit detection and measurement -- 6.4 Quantum repeater (QR) -- 6.5 Distributed quantum nodes -- Appendix 6A. Stationary qubit source technologies -- Reference -- Index.
506 1 _aRestricted to libraries which purchase an unrestricted PDF download via an IP.
520 3 _aQuantum mechanics is the most successful theory for describing the microworld of photons, atoms, and their aggregates. It is behind much of the successes of modern technology. It has deep philosophical implications to the fundamental nature of material reality. A few decades ago, it was also realized that it is connected to the computer science and information theory. With this understanding were born the new disciplines of quantum computing and quantum communication. The current book introduces the very exciting area of quantum communication, which lies at the intersection of quantum mechanics, information theory, and atomic physics. The relevant concepts of these disciplines are explained, and their implication for the task of unbreakably secure communication is elucidated. The mathematical formulation of various approaches has been explained. An attempt has been made to keep the exposition self-contained. A senior undergraduate with good mathematics and physics background should be able to follow the current thinking about these issues after understanding the material presented in this book.
588 _aTitle from PDF title page (viewed on August 6, 2016).
650 0 _aQuantum communication.
653 _aInformation Theory
653 _aQuantum Mechanics
653 _aShannon Entropy
653 _aQuantum Coding
653 _aEntanglement
653 _aQuantum Information
655 4 _aLibros electronicos.
776 0 8 _iPrint version:
_z9781606505564
830 0 _aCommunications and signal processing collection.
856 4 0 _uhttps://ebookcentral.proquest.com/lib/bcsl-ebooks/detail.action?docID=4612387
_zClick to View
999 _c761159
_d761159